3.480 \(\int \frac{x^2}{(d+e x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=126 \[ \frac{2 x^2}{3 (d+e x) \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{8 a e \left (x \left (a e^2+c d^2\right )+2 a d e\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[Out]

(2*x^2)/(3*(c*d^2 - a*e^2)*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (8*a*e*(2*a*d*e + (c*d^2 +
 a*e^2)*x))/(3*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.107981, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.075, Rules used = {854, 12, 636} \[ \frac{2 x^2}{3 (d+e x) \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{8 a e \left (x \left (a e^2+c d^2\right )+2 a d e\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(2*x^2)/(3*(c*d^2 - a*e^2)*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (8*a*e*(2*a*d*e + (c*d^2 +
 a*e^2)*x))/(3*(c*d^2 - a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 854

Int[(((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> -Si
mp[((2*c*d - b*e)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(e*p*(b^2 - 4*a*c)*(d + e*x)), x] - Dist[1/(d*e*p*(b^
2 - 4*a*c)), Int[(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p*Simp[b*(a*e*g*n - c*d*f*(2*p + 1)) - 2*a*c*(d*g*n - e*f
*(2*p + 1)) - c*g*(b*d - 2*a*e)*(n + 2*p + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*
g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[n, 0] && ILtQ[n + 2*p,
0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 636

Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2*(b*d - 2*a*e + (2*c*
d - b*e)*x))/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] &&
NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{x^2}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=\frac{2 x^2}{3 \left (c d^2-a e^2\right ) (d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{2 \int -\frac{2 a d e^2 \left (c d^2-a e^2\right ) x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 d e \left (c d^2-a e^2\right )^2}\\ &=\frac{2 x^2}{3 \left (c d^2-a e^2\right ) (d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{(4 a e) \int \frac{x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 \left (c d^2-a e^2\right )}\\ &=\frac{2 x^2}{3 \left (c d^2-a e^2\right ) (d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{8 a e \left (2 a d e+\left (c d^2+a e^2\right ) x\right )}{3 \left (c d^2-a e^2\right )^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0768139, size = 99, normalized size = 0.79 \[ \frac{-2 a^2 e^2 \left (8 d^2+12 d e x+3 e^2 x^2\right )-4 a c d^2 e x (2 d+3 e x)+2 c^2 d^4 x^2}{3 (d+e x) \left (c d^2-a e^2\right )^3 \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(2*c^2*d^4*x^2 - 4*a*c*d^2*e*x*(2*d + 3*e*x) - 2*a^2*e^2*(8*d^2 + 12*d*e*x + 3*e^2*x^2))/(3*(c*d^2 - a*e^2)^3*
(d + e*x)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.072, size = 145, normalized size = 1.2 \begin{align*}{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 3\,{a}^{2}{e}^{4}{x}^{2}+6\,ac{d}^{2}{e}^{2}{x}^{2}-{c}^{2}{d}^{4}{x}^{2}+12\,{a}^{2}d{e}^{3}x+4\,ac{d}^{3}ex+8\,{a}^{2}{d}^{2}{e}^{2} \right ) }{3\,{a}^{3}{e}^{6}-9\,{a}^{2}c{d}^{2}{e}^{4}+9\,a{c}^{2}{d}^{4}{e}^{2}-3\,{c}^{3}{d}^{6}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

2/3*(c*d*x+a*e)*(3*a^2*e^4*x^2+6*a*c*d^2*e^2*x^2-c^2*d^4*x^2+12*a^2*d*e^3*x+4*a*c*d^3*e*x+8*a^2*d^2*e^2)/(a^3*
e^6-3*a^2*c*d^2*e^4+3*a*c^2*d^4*e^2-c^3*d^6)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 19.2837, size = 602, normalized size = 4.78 \begin{align*} -\frac{2 \,{\left (8 \, a^{2} d^{2} e^{2} -{\left (c^{2} d^{4} - 6 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} x^{2} + 4 \,{\left (a c d^{3} e + 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{3 \,{\left (a c^{3} d^{8} e - 3 \, a^{2} c^{2} d^{6} e^{3} + 3 \, a^{3} c d^{4} e^{5} - a^{4} d^{2} e^{7} +{\left (c^{4} d^{7} e^{2} - 3 \, a c^{3} d^{5} e^{4} + 3 \, a^{2} c^{2} d^{3} e^{6} - a^{3} c d e^{8}\right )} x^{3} +{\left (2 \, c^{4} d^{8} e - 5 \, a c^{3} d^{6} e^{3} + 3 \, a^{2} c^{2} d^{4} e^{5} + a^{3} c d^{2} e^{7} - a^{4} e^{9}\right )} x^{2} +{\left (c^{4} d^{9} - a c^{3} d^{7} e^{2} - 3 \, a^{2} c^{2} d^{5} e^{4} + 5 \, a^{3} c d^{3} e^{6} - 2 \, a^{4} d e^{8}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

-2/3*(8*a^2*d^2*e^2 - (c^2*d^4 - 6*a*c*d^2*e^2 - 3*a^2*e^4)*x^2 + 4*(a*c*d^3*e + 3*a^2*d*e^3)*x)*sqrt(c*d*e*x^
2 + a*d*e + (c*d^2 + a*e^2)*x)/(a*c^3*d^8*e - 3*a^2*c^2*d^6*e^3 + 3*a^3*c*d^4*e^5 - a^4*d^2*e^7 + (c^4*d^7*e^2
 - 3*a*c^3*d^5*e^4 + 3*a^2*c^2*d^3*e^6 - a^3*c*d*e^8)*x^3 + (2*c^4*d^8*e - 5*a*c^3*d^6*e^3 + 3*a^2*c^2*d^4*e^5
 + a^3*c*d^2*e^7 - a^4*e^9)*x^2 + (c^4*d^9 - a*c^3*d^7*e^2 - 3*a^2*c^2*d^5*e^4 + 5*a^3*c*d^3*e^6 - 2*a^4*d*e^8
)*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac{3}{2}} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral(x**2/(((d + e*x)*(a*e + c*d*x))**(3/2)*(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \left [\mathit{undef}, \mathit{undef}, \mathit{undef}, 1\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

[undef, undef, undef, 1]